

RFD900x Peer-to-peer firmware

User Manual

Configuration and usage guide Flash Programmer User Manual

RFDesign Pty Ltd 7/1 Stockwell Place Archerfield, QLD 4108 rfdesign.com.au

Table of contents

1Introduction	3
2Software/GCS Support	
3AT commands	
3.1Setting up data encryption	8
3.2Setting the air data rate	
4Peer-to-peer Network	
5Frequently asked questions (FAQ)	11
How many antennas do I need to use?	11
How do I connect the FTDI cable to the modem?	11
What do I need to upload the firmware or to change the modem configuration?	11
6Useful links	
7Document revision history	

1 Introduction

The RFD900x radio modem can be loaded with two official firmware releases to achieve different communication architectures and node topologies. So far, the available firmware versions are:

- Peer-to-peer (P2P) (SiK/MPSiK)
- 35 Asynchronous non-forwarding mesh

This document describes the configuration of the peer-to-peer release. The RFD900x comes with this version loaded by default, and it requires no further configuration to work. Figure 1-1 pictures a P2P network diagram.

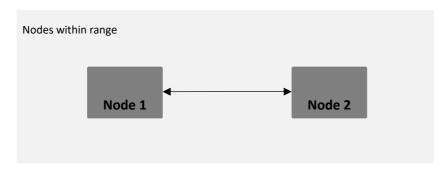


Figure 1-1: Peer-to-peer network architecture

2 Software/GCS Support

This firmware (see "Useful Links") is a development of the open source project called "SiK" and was created by Mike Smith and improved on by Andrew Tridgell and RFDesign.

The modems feature a boot loader to facilitate field upgrade of the modem firmware via the serial port. This is most easily performed by using the latest version RFD Modem tools (see "Useful links")

Parameters such as power levels, air data rates, serial speeds, GPIO pins etc can all be custom set by the user using the AT Command set, the RFD Modem Tools V2 or later and APM Planner.

Default serial port settings are as follows:

- 57600 baud rate
- No parity
- 8 data bits
- 1 stop bit

The RFD900x Radio Modem has many software features including:

- Frequency Hopping Spread Spectrum
- Transparent Serial Link
- Configuration by AT commands for local radio, RT Commands for remote radio
- User configurable serial data rates and air data rates
- Error correction routines
- MAVLink protocol framing (user selectable)
- MAVLink radio status reporting (Local RSSI, Remote RSSI, Local Noise, Remote Noise)
- · Automatic antenna diversity switching on a packet basis in real-time
- · Automatic duty cycle throttling based on radio temperature in order to avoid overheating
- PPM (R/C signal) pass through (Control vehicle across radio).
- · GIPO pin mirroring

3 AT commands

The RFD900x modem can supports an AT modem command set for configuration. The AT command mode can be entered by using the '+++' sequence in a serial terminal connected to the radio. You should allow at least one second after the sending of data before entering the sequence to ensure that the modem will correctly enter command mode. If successful an 'OK' prompt will be displayed on the screen and the RFD900x modem will stop displaying incoming data from the remote modem. In command mode, you can use the AT commands to control the local RFD900x modem or the RT commands to control the remote modem.

To set certain registers to a value, follow these steps:

- 1. Use the command ATSn=X where n is the register number and X is the value to assign.
- 2. Use the command AT&W to save the new values to the RFD900x modem.
- 3. Use the command ATZ to reboot the RFD900x modem for changes to take effect.

By replacing A with R the settings of the remote modem can be changed. It is recommended that changes to remote settings be made first.

Table 3-1 shows a gives a list of AT commands and their description.

AT C	Description	
AT Command	Description	
ATI	Shows the radio version	
ATI2	Shows the board type	
ATI3	Shows board frequency	
ATI4	Shows board version	
ATI5	Shows all user settable EEPROM parameters and their values	
ATI5?	Shows all user settable EEPROM parameters and their possible range	
ATI6	Displays TDM timing report	
ATI7	Displays RSSI signal report	
ATI8	Display Device 64-bit unique ID	
ATI9	Display node ID [multipoint only]	
ATO	Exits AT command mode	
ATSn?	Displays radio 'S' parameter number 'n'	
ATSn=X	Sets radio 'S' parameter number 'n' to 'X'	
ATRn?	Displays radio 'R' parameter number 'n'	
ATRn=X	Sets radio 'R' parameter number 'n' to 'X'	
ATZ	Reboots the radio	
AT&F	Resets all parameters to factory defaults	
AT&W	Writes current parameters to EEPROM	
AT&UPDATE	Reset and enter boot mode	
AT&P	Change TDM phase (debug only)	
AT&R	Record default PPM stream for PPM output (vehicle side)	
AT&T	Disables debugging report	
AT&T=RSSI	Enables RSSI debugging report	
AT&T=TDM	Enables TDM debugging report	
•		

AT&E=X	Set new encryption key (128 bit AES in 32 hex characters 5A02D5BB)		
AT&E?	Shows current encryption key		
ATPP	Shows GPIO configuration and state		
ATPO=X	Sets GPIO X to output		
ATPI=X	Sets GPIO X to input		
ATPM=X	Sets input GPIO pin to mirror on remote radio (local GPIO must be set to input		
	and remote GPIO pin must be set to output)		
ATPR=X	Shows GPIO input state		
ATPC=X,S	Sets output GPIO X to state S		

Table 3-1: AT Commands and their description

RT commands are terminal commands that take effect on a remote node. They allow the user to set or get a remote node's parameter, for instance, as if they were being set locally. Table 3-2 lists the RT commands and their respective descriptions.

RT Command	Description	
RTI	Shows the radio version	
RTI2	Shows the board type	
RTI3	Shows board frequency	
RTI4	Shows board version	
RTI5	Shows all user settable EEPROM parameters and their values	
RTI5?	Shows all user settable EEPROM parameters and their possible range	
RTI6	Displays TDM timing report	
RTI7	Displays RSSI signal report	
RTI8	Display Device 64-bit unique ID	
RTI9	Display node ID [multipoint only]	
RTO	Exits AT command mode	
RTSn?	Displays radio 'S' parameter number 'n'	
RTSn=X	Sets radio 'S' parameter number 'n' to 'X'	
RTRn?	Displays radio 'R' parameter number 'n'	
RTRn=X	Sets radio 'R' parameter number 'n' to 'X'	
RTZ	Reboots the radio	
RT&F	Resets all parameters to factory defaults	
RT&W	Writes current parameters to EEPROM	
RT&UPDATE	Reset and enter boot mode	
RT&P	Change TDM phase (debug only)	
RT&R	Record default PPM stream for PPM output (vehicle side)	
RT&T	Disables debugging report	
RT&T=RSSI	Enables RSSI debugging report	
RT&T=TDM	Enables TDM debugging report	
RT&E=X	Set new encryption key (128 bit AES in 16 hex bytes 5A02D5BB)	
RT&E?	Shows current encryption key	
RTPP	Shows GPIO configuration and state	
RTPO=X	Sets GPIO X to output	
RTPI=X	Sets GPIO X to input	
RTPM=X	Sets input GPIO pin to mirror on remote radio (local GPIO must be set to input	
	and remote GPIO pin must be set to output)	
RTPR=X	Shows GPIO input state	

RFD900x Data Sheet www.rfdesign.com.au

RTPC=X,S Sets output GPIO X to state S

Figure 3-2: RT Commands and their description

Issuing a RT command will take effect only in the remote mode in a peer-to-peer configuration, which is a very useful feature if you have a remote node that is hard to access. Just make sure to keep the parameters compatible, whenever changing a parameter in the remote node. An example this command will return the remote radio's version string.

RTI

Table 3-3 shows more details about the parameters that can be set in the RFD900x modem.

Re g#	S Register Description	Default Value	Maximum Value	Minimum Value	Must be the same at both ends of the link?
S0	FORMAT This is for EEPROM version, it should not be changed. It is set by the firmware	Firmware dependant	N/A	N/A	No
S1	SERIAL_SPEED Serial speed in 'one byte form'. Accepted values are 1, 2, 4, 9, 19, 38, 57, 115, 230, 460 corresponding to 1200bps, 2400bps, 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps and 1000000bps respectively.	57	1000	1	No
S2	AIR_SPEED Air data rate in 'one byte form'. Accepted values are 4,64,125,250,500,830 corresponding to 4000bps, 64000bps, 125000bps, 25000bps, 500000bps and 750000bps respectively.	64	750	4	Yes
S3	NETID Network ID. The same on both modems in the pair	25	255	0	Yes
S4	TXPOWER Transmit power in dBm. Maximum is 30dBm	30	30	0	No
S 5	ECC¹ Enables or disables the Golay error correcting code. When enabled, it doubles the over-the-air data usage	0	1	0	Yes
S6	MAVLINK ² Enables or disables the MAVLink framing and reporting	1	1	0	No
S7	OP_RESEND Opportunistic resend allows the node to resend packets if it has spare bandwidth	0	1	0	No
S8	MIN_FREQ Min frequency in KHz	915000	927000	902000	Yes
S9	MAX_FREQ Max frequency in KHz	928000	928000	903000	Yes

S10	NUM_CHANNELS Number of frequency hopping channels	20	50	5	Yes
S11	DUTY_CYCLE The percentage of time to allow transmit	100	100	10	No
S12	LBT_RSSI Listen before talk threshold (This parameter shouldn't be changed)	0	220	25	Yes
S13	RTSCTS Ready-to-send and Clear-to-send flow control.	0	1	0	No
S14	Max Window Max transit window size, used to limit max time/latency if required otherwise will be set automatically	131	400	20	Yes
S15	Encryption Level Encryption level 0=off, 1=128bit	0	1	0	Yes
S16	R/C input GPIO1.1 Set GPIO 1.1 as R/C(PPM) input	0	1	0	No
S17	R/C output GPIO1.1 Set GPIO 1.1 as R/C(PPM) output	0	1	0	No
S18	ANT_MODE 0=Diversity, 1=antenna 1 only, 2=antenna 2 only, 3=antenna 1 TX antenna 2 RX	0	3	0	No
S19	PKT_DROP_RSSI				
	Sets a RSSI threshold below which the packet will be discarded. O disables the feature	0	255	0	No
RO	TARGET_RSSI Optimal RSSI value to try to sustain (off = 255)	255	50	255	No
R1	HYSTERESIS_RSSI Amount of change before power levels altered	50	20	50	No

Table 3-3: RFD900x parameters

Notes:

3.1 Setting up data encryption

The 128-bit AES data encryption may be set, enabled and disabled using the AT commands (see Table 3.1). The encryption key can be any 32-character hexadecimal string.

To encrypt a device, the encryption mode must first be enabled by typing 'ATS15=1' in the command terminal. Once the encryption mode is active, an encryption key may be set after typing 'AT&E' into the command terminal. The encryption key may be of any 32-character hexadecimal string of the users choosing. Any devices with different encryption settings will not communicate.

¹ ECC - Software Detection and correction, extra packet information, twice the packet length, is sent to allow the recovery of corrupted packets.

 $^{^{2}\,}$ Injects RSSI packet when MAVLink protocol used and heartbeat packet detected.

RFD900x Data Sheet www.rfdesign.com.au

After entering command mode, send the following commands to set encryption on using an arbitrary 32 hexadecimal character key. For example:

```
ATS15=1
AT&E=5AEEF103125C0AA233678909160111CA
AT&W
ATZ
```

3.2 Setting the air data rate

An air speed of 64kps will give a range of about 40km in open space depending on antenna. If the air speed is set lower, the range of the wireless link can be increased but the amount of data that you can send will be limited. Therefore, one has to compromise between range and data rate.

The air data rate is chosen depending on:

- The range that you need
- The data that you will be sending
- Whether you send data in one direction or both
- Whether you have enabled ECC or not
- Whether you have adaptive flow control

It is important to note that the board's data rate should be set to a higher value then the air data rate to prevent bottlenecking and data loss.

Example of changing air data rate:

```
ATS2=250
AT&W
ATZ
```

RFD900x Data Sheet www.rfdesign.com.au

4 Peer-to-peer Network

The peer-to-peer firmware offers a straight forward communication option that allows the user to quickly transmit and receive data across a great distance between two nodes. Figure 4-2 depicts this very simple communication topology. Whenever two nodes have compatible parameters and are within range, communication will be established after the units synchronise. A solid green LED state indicates synchronisation has been successful.

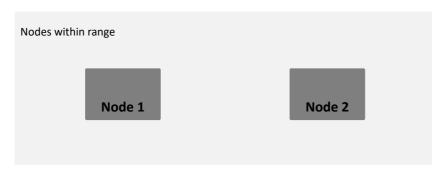


Figure 4-2: Simple pair mode

If your setup requires more than one pair of radios within the same physical space, you are required to set different network ID's to each pair. It is also advisable when possible to set the different pairs on different frequencies. This prevents packet collision and communication instability. To set up the network ID, get into command mode using the serial terminal and issue the ATS3 command. In the following example, the node is set to network id 5:

5 Frequently asked questions (FAQ)

How many antennas do I need to use?

One is the minimum. Two is recommended.

How do I connect the FTDI cable to the modem?

The black cable of the FTDI (pin 1) should connect to pin 1 on the modem as shown in Figure 13-1.

Figure 6-2: An FTDI cable connected to the RFD900x modem

What do I need to upload the firmware or to change the modem configuration?

Download the latest firmware (see "Useful Links"). Download the RFD900x Modem Tools (see "Useful Links"). Connect the FTDI cable to the modem and to a computer. Use the RFD900x Modem Tools to upload the latest firmware or to change the modem configuration (see "RFD900x Modem Tools User Manual").

6 Useful links

RFD900x Firmware

http://rfdesign.com.au/firmware/

RFD SiK firmware is standard SiK (open source)

RFD Asynchronous firmware

RFD900x Modem Tools

http://rfdesign.com.au/downloads/

FTDI Cable documentation

http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_CABLES.pdf

7 Document revision history

Version	Date	Changes
1.0	22/09/17	Release document

